A concept for collection and presentation of material properties for diverse applications Hubert Lobo

Outline

- Problem definition
- Terminology and characteristics
- Solution framework
- Conclusions

Why all this?

Except for simple cases....

- Material properties are not definitive!
- Handbook values are typical, not representative
- You cannot possibly measure all the possible nuances of a materials behavior- nor would you be interested

Material properties differ...

- Properties depend on the application
 - on test conditions:
 - temperature
 - rate
 - time
 - environmental exposure
 - the samples
 - the test specimens

Example

Case 1

- Automotive- Fuel Tank
 - Material : Polyethylene (PE)
 - Deformation: large, low temp failure
 - Model: *ELASTIC/*PLASTIC
 - Data needed: stress-strain curve at -40C
 - Typical data: taken on virgin resin at 23C
- Reality:
 - Data at -40C is needed
 - Much stiffer, brittle failure?

Example

Case 2

Bio-Implant Component

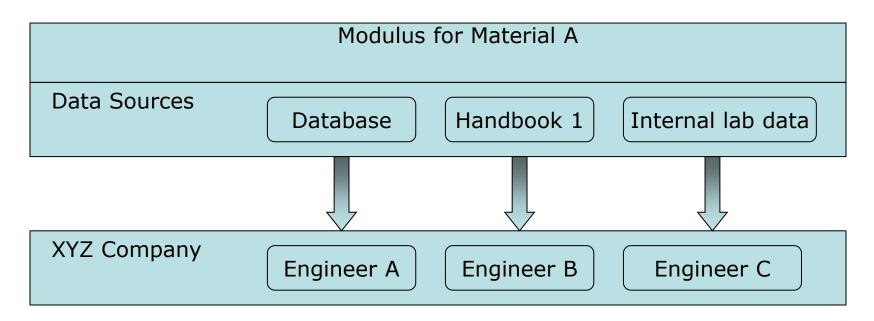
- Material : Polyethylene (PE)
- Deformation: large
- Model: *ELASTIC/*PLASTIC
- Data needed: stress-strain curve
- Typical data: virgin resin, 23C
- Reality
 - 37C, saline environment
 - Large reduction in properties

Problem

What's good for the goose ...

- The correct material property for a particular use may not be the right one for another application
- Conversely, it is pointless developing properties outside the context of an application

is bad for the gander...


Finding the right data

- Imagine wading through enormous swamps looking for the right data
 - Handbooks
 - Internet
 - Databases
 - File cabinets
 - Colleagues and co-workers

Inconsistent use of data

the six sigma killer...

Problem

Poor properties can be fatal

- Property no longer represents the behavior being simulated
- Can be a root cause of error in CAE
- Presents a serious credibility problem for analyst, CAE tool, and VPD

How to avoid this?

- Understand the environment that is being simulated
- Translate the behaviors into a set of measurable property requirements
- Pay heed to the underlying assumptions
- Develop representative properties
- Use consistently across VPD platform

The case in singular

- I need to store a variety of properties
- On the materials that I use most
- Which must be pertinent to my class of applications
- And appropriate for my CAE solution

The big picture

- We need to store a multitude of varied properties
- Which depend on the end use application
- For diverse applications
- For diverse material types
- Useable in a variety of CAE solutions

a major mess...

material (ma·te·ri·al)

- (1) : the elements, constituents, or substances of which something is composed or can be made
- (2) : matter that has qualities which give it individuality and by which it may be categorized

Merriam Webster Collegiate Dictionary

-Date: 1556

reality (re·al·i·ty)

- 1: the quality or state of being real
- 2 a (1): a real event, entity, or state of affairs
- 2 a (2): the totality of real things and events
- 2 b : something that is neither derivative nor dependent but exists necessarily

Merriam Webster Collegiate Dictionary

-Date: 1550

A new semantic definition

matereality (mat·e·re·al·ity)

- 1: collections of material properties that represent a particular behavioral reality
- 2: material properties used in virtual product development
- 3: a collection of properties pertinent to a particular stage of the product life cycle

-Date: 2002

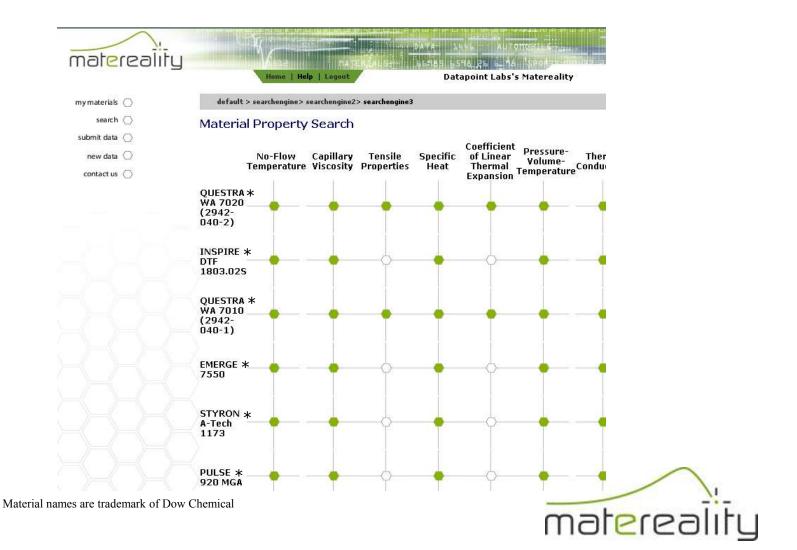
Characteristics of matereality

- A matereality is defined in the context of its end use
- A matereality is self-consistent

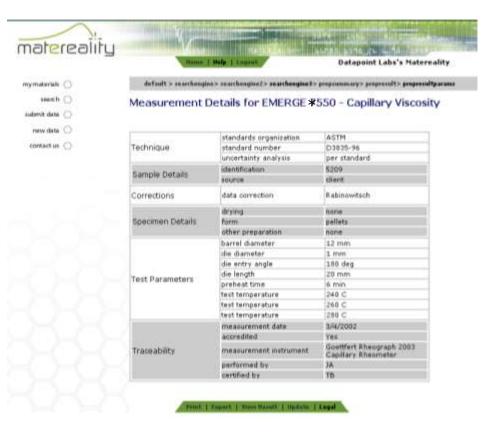
Framework

- Properties of one matereality may not be applicable to another matereality
- Misuse of properties in a matereality can fracture the matereality

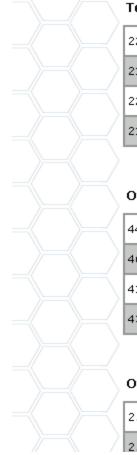
Features of matereality


Pertinent

- All properties represent the behavior under consideration
- Traceable
 - The source and quality of the data must be assessable
- Describes variability
 - An understanding of the statistical spread of the representative property



Pertinence


Traceability

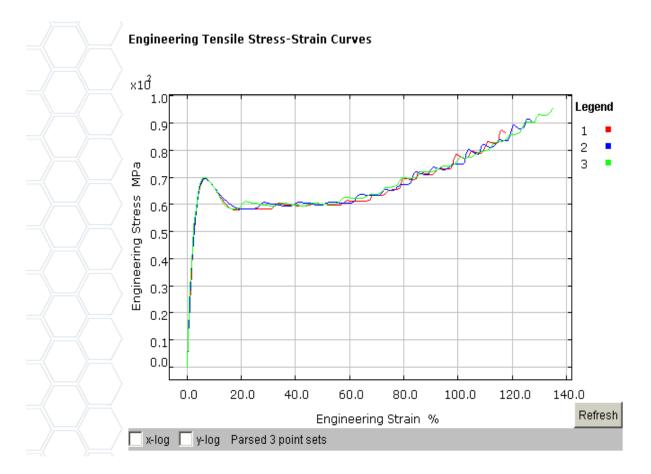
Variability

Tensile Modulus - Youngs

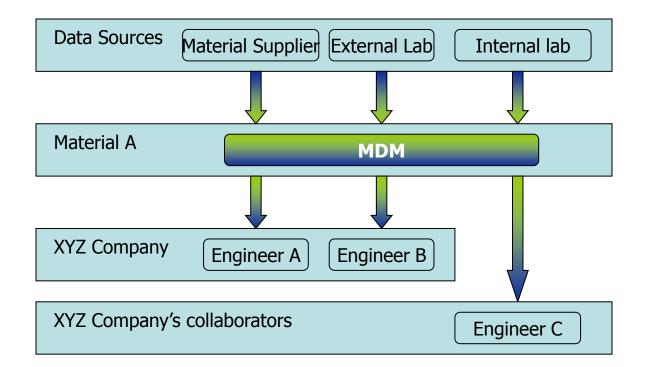
2223 MPa	1
2138 MPa	2
2229 MPa	3
2197 MPa	Average

Offset Yield Stress in Tension

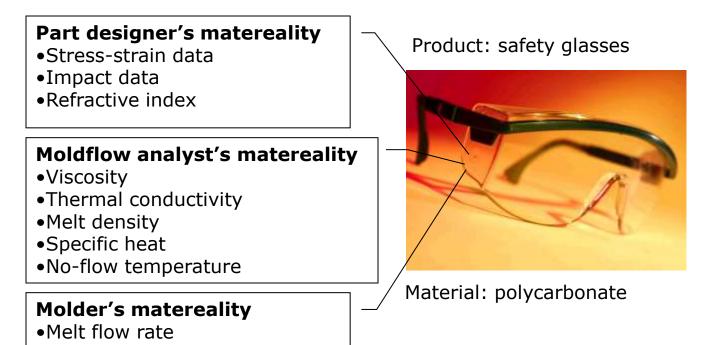
44.27 MPa	1
46.04 MPa	2
41.07 MPa	3
43.79 MPa	Average


Offset Yield Strain in Tension

2.12 MPa	1	
2.24 MPa	2	



Variability


Matereality applied consistently

Example

Examples of matereality

one material, many materealities

Moldflow is a trademark of Moldflow Corp.

•Izod strength

Cost savings

- Only the properties needed are measured
- Once measured, properties are shared by all stakeholders
- Reduced risk- no searching in dubious places for data

Conclusions

- Defines a collection of properties pertinent to a particular stage of the product life cycle
- Authoritatively defines the manner in which a particular behavior is described.
- Used to classify property collections for different applications

