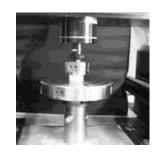


a world of materials


many products

each with its own reality

material data

compressive

stress relaxation

tensile

viscosity

fatigue

conductivity

expansion

properties that describe reality

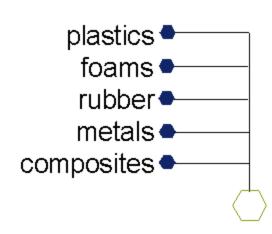
www.matereality.com material databases for all

Material Databases that Serve Material Properties and Material Models

Hubert Lobo President + CTO

Matereality & DatapointLabs

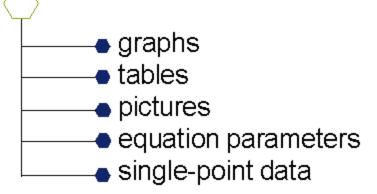
- DatapointLabs est. 1995
 - Expert material testing
 - Mechanical, thermal, rheology properties
 - TestPaks for CAE
- Matereality est. 2002
 - Web material database company
 - Databases for suppliers, OEMs, Tier n...
 - Any material, any properties, one platform


Purpose

- A Web Platform shared by
 - material supplier tech support engineers
 - Automotive end user design engineers
- Web Software (SAS) to
 - Locate and request data
 - Deliver design properties
 - Deliver material models for diverse CAE

Technology

Matereality Databases



private

public

- Complete
- Extensible
- Traceable
- Shareable
- Secure

no limits!

A variety of properties

Property Search

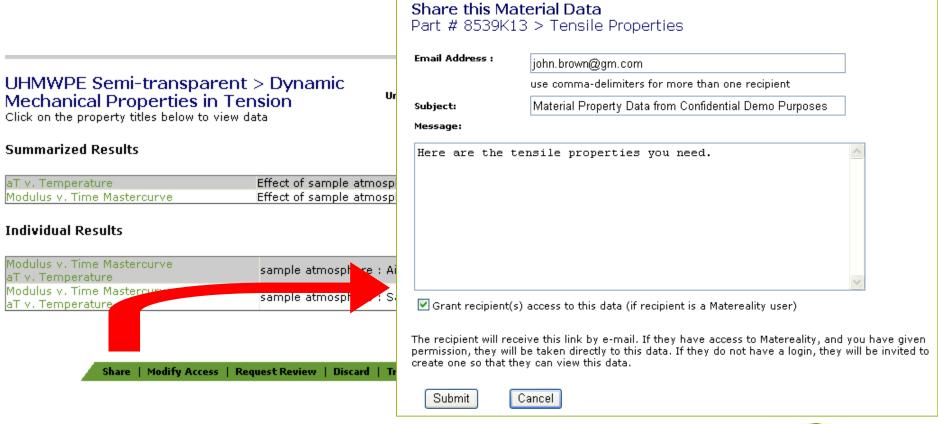
Class	Sub Class	Supplier
		Saint-Gobain

Material Properties Available

S	Capillary Viscosity
4	Charpy Impact Melt Elasticity
V	Coefficient of Linear Thermal Expansion Specific Heat
4	Compressive Creep Tensile Creep
V	Hardness Tensile Properties
4	Heat Deflection Temperature
	☐ Instrumented Dart Impact

Traceability

All data is traceable


Data Certificate

8586K162 > Tensile Properties

Tochnique	standards organization	ASTM
Technique	standard number	ASTM D638-08
Cample Details	ID	15388
Sample Details	sample source	client
	crosshead speed	5 mm/min
	extensometry	Axial - contact, 2" gage Class B-1
T B	gage length	50 mm
Test Parameters	laboratory humidity	51 %RH
	test temperature	-10 C
	test temperature	23 C
	test temperature	60 C
	conditioning	40 hours, 23C, 50%RH
	form	type I tensile bars
Specimen Details	other specimen preparation	machined plaque
	thickness	3.29 mm
	width	12.28 mm
	test laboratory	Datapoint Labs
	measurement date	8/6/2009
	accredited	Yes
Traceability	measurement instrument	Instron 8872 Servohydraulic UTM
	performed by	BL
	certified by	ВС

Global Collaboration

Direct export to Excel

Excel | Export | Certificate | Modify Access | Request Review | Discard | Transfer Owner | Legal

Address			Material		
	Α Ι	В	С	D	Е
1	Material N	_	_	_	
2	Property N				
3	Parameter		cruciform		
4	Parameter	conditionii			RH.
5	Parameter				
6	Parameter		75		
7	Parameter	thickness	1.505		
8	Parameter				
9	Parameter	laboratory	47		
10	Parameter	crosshead	500		
11	Result Nar	Engineerir	ng Biaxial S	tress-Strai	n Curve
12	Representa				
13	Engineerin	Engineerir	ng Stress		
14	%	MPa			
15					
16	0.05516	0.00017			
17	0.738	0.026532			
18	1.076157	0.052895			
19	1.827673	0.079359			
20	2.589937	0.10551			
21	3.351755	0.130915			
22	3.982366	0.155478			
23		0.17912			
24		0.202341			
25		0.223984			
26	6.851641	0.244124			
27	7.629852	0.26364			
28	8.391452	0.282573			
29	9.098547	0.300537			
30	9.847187	0.317565			
31	10.58415	0.334547			
32	11.2897	0.350211			
33		0.365961			
34	12.84748	0.38127	rid=25_63		

CAE Model Creation Process

- Locate raw data specific to a simulation
- Present raw data for inspection
 - Quality check
 - Traceability check
- Convert raw data to material model
- Model tuning
- Output material card

Search engine locates data

Home | Help | Logout

Confidential Demo Purposes's Matereality

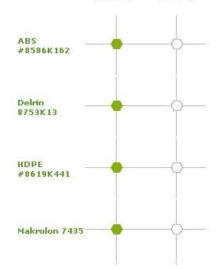
my account

my data

data center 🕕

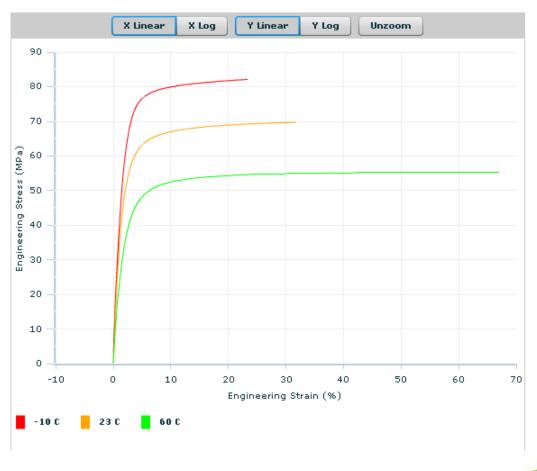
my users

contact us


Home > Search > Select > MIROResult

CAE Wizard: ANSYS MISO

Note: Some MIRO wizard searches are highly restrictive to permit the necessary downstream data-processing. A failed search does not necessarily mean that the data you need is not within Matereality. More data may be found by doing a Property Search. Additional manual data processing may be needed to make it ready for your end-use application.


Match 0 Match 1

Raw data from testing

Engineering Tensile Stress-Strain Curves

matereality

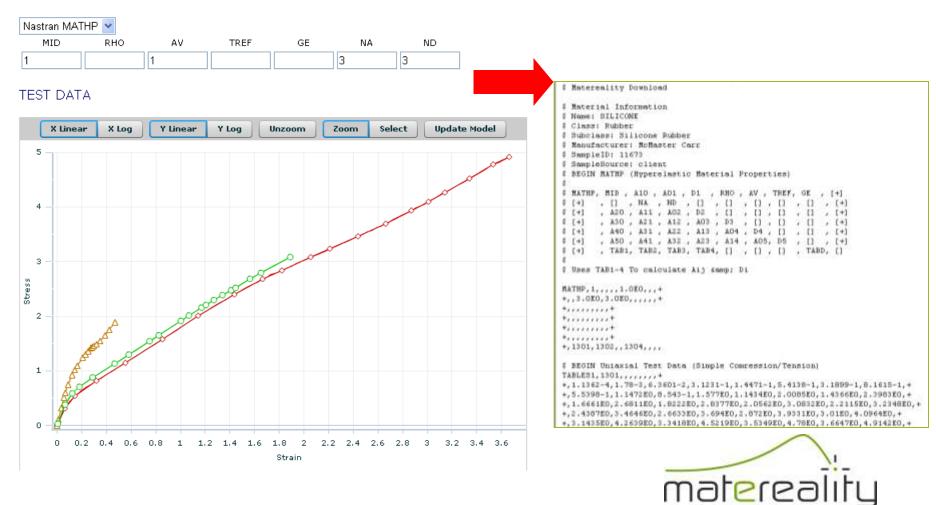
Post-processing and output

*Flastic

Temperature (C)	Modulus (MPa)	Poisson's Ratio
-10	3607.59123689013	0.2413
23	3183.7938807461	0.323571664399527
60	2174.59568965032	0.39415

*Plastic Plot


```
** Output generated by Matereality
** Abaqus Plastic Model
*MATERIAL, name=Delrin8753K13
3607.59123689013, 0.2413, -10
3183.7938807461. 0.323571664399527. 23
2174.59568965032, 0.39415, 60
*PLASTIC
46.381708640637, 0,-1,000E+01
59.3182190072696, 0.0028490427305577354,-1.000E+01
71.8736400512504, 0.01017006174294555,-1.000E+01
76.7156702762688, 0.016802750802138691,-1.000E+01
79.8204244473178, 0.0246331420035193,-1.000E+01
83.7520014704219, 0.042400203020399568,-1.000E+01
88.44580120706, 0.07511425176203515,-1.000E+01
101.286187380666, 0.18221125102592156,-1.000E+01
41.2027474277636, 0,2.300E+01
48.0138087197766, 0.0021790259049776321,2.300E+01
57.359137021248, 0.00867790936047107,2.300E+01
62.9873556601982, 0.017373626682723388,2.300E+01
66.4967793306663, 0.027568865979447788,2.300E+01
70.9009392980115, 0.05004465060490744,2.300E+01
76.72575710626, 0.096883146480115784,2.300E+01
91.876816291205, 0.24545717623947155,2.300E+01
30.11774647629, 0,6.000E+01
38.66825030697, 0.0039035831184979289,6.000E+01
48.5300393483556, 0.017108653508792655,6.000E+01
53.3730143012474, 0.03494428420354867,6.000E+01
60.661535633334, 0.095585277502911209,6.000E+01
74.9317547325, 0.26978649975467672,6.000E+01
81.885009651224, 0.35258702479111464,6.000E+01
92.151413540012, 0.46612695216059519,6.000E+01
```


Rubber materials

matereality	Home Help Lo	ogout Confidential Demo Purposes's Matereality	
my account 〈〉	Home > Search > Select > MIRO		
my data 🔘	SILICONE>NASTRAN MATHP Data		
data center () my users ()	Raw data is summarized below.	Click on the property titles to view details.	
contact us	Hyperelastic Properties		
	Engineering Stress- Strain Curves	test mode : Tensile	
	Engineering Stress- Strain Curves	test mode : Biaxial Tensile Properties	
	Engineering Stress- Strain Curves	test mode : Planar	

Hyper-elastic model output

SILICONE>Nastran MATHP

Injection-molding data

CALIBRE* 3031>Moldflow Data

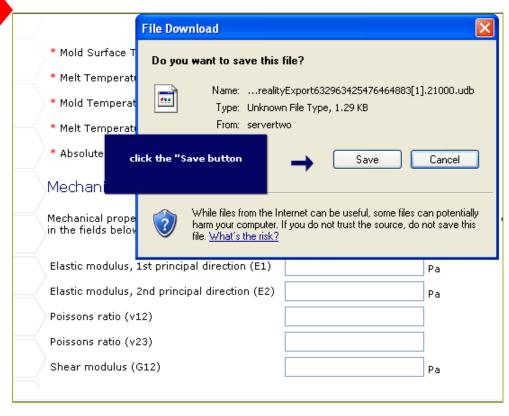
Raw data is summarized below. Click on the property titles to view details.

Thermal Conductivity

No-Flow Temperature

|--|

Specific Heat


Specific Heat v. Temperature Data		
Transition End	131 C	
Transition Onset	141 C	
Transition Temperature	137 C	

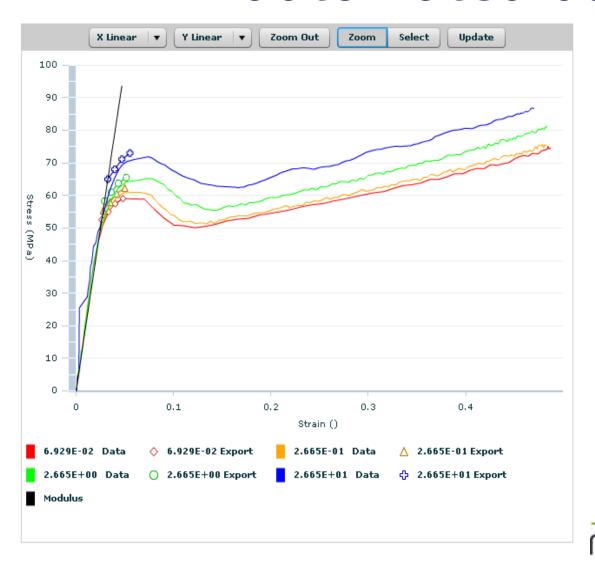
Pressure-Volume-Temperature

Solid Density	1189.3 kg/m3	pressure : O MPa
Two Domain Tait Model		

Capillary Viscosity

Cross/WLF Model	Cross/WLF Model		
-----------------	-----------------	--	--

High-strain rate tensile data

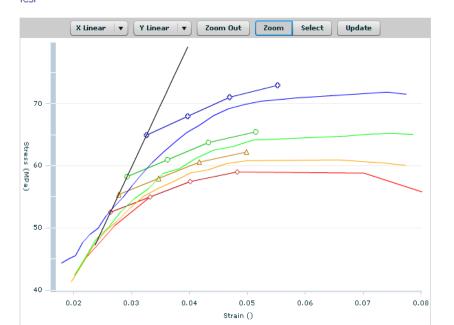

Makrolon 7435>LS-DYNA MAT_024 Data

Raw data is summarized below. Click on the property titles to view details.

Tensile Properties

Engineering Tensile Stress-Strain Curves		strain rate : 0.0692899615250087 /s
Engineering Tensile Stress-Strain Curves		strain rate : 0.266526757607555 /s
Engineering Tensile Stress-Strain Curves		strain rate : 2.66526757607555 /s
Engineering Tensile Stress-Strain Curves		strain rate : 26.6526757607555 /s
Eyring Plot		
Eyring Plot		
Poissons Ratio	0.4	strain rate : 0.0692899615250087 /s
Tensile Modulus	1992 MPa	strain rate : 0.0692899615250087 /s
Tensile Modulus	2171 MPa	strain rate : 0.266526757607555 /s
Tensile Modulus	2148 MPa	strain rate : 2.66526757607555 /s
Tensile Modulus	2417 MPa	strain rate : 26.6526757607555 /s

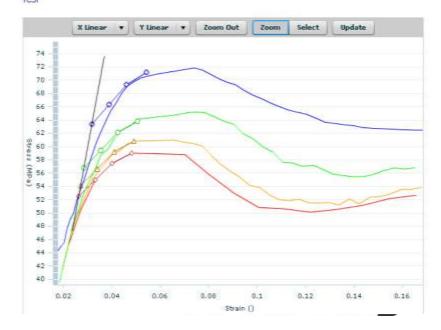
MAT 24 automated data fit



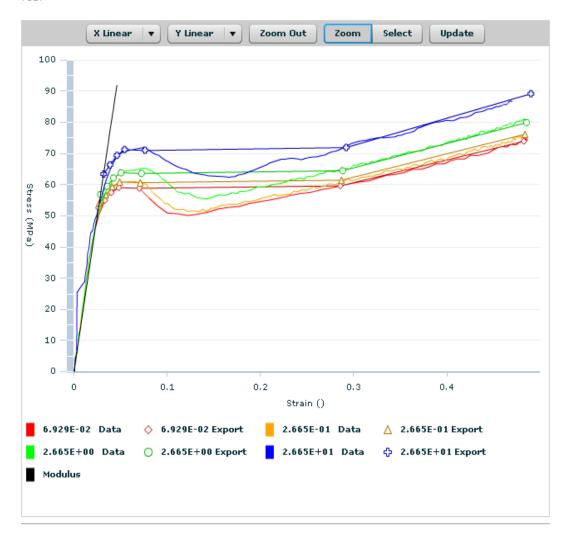
Rate dependency tuning

LCSR

Strain Rate (/s)	Stress Ratio
0.06929	1
0.2665	1.0545454545454545
2.665	1.1090909090909091
26.65	1.2363636363636363

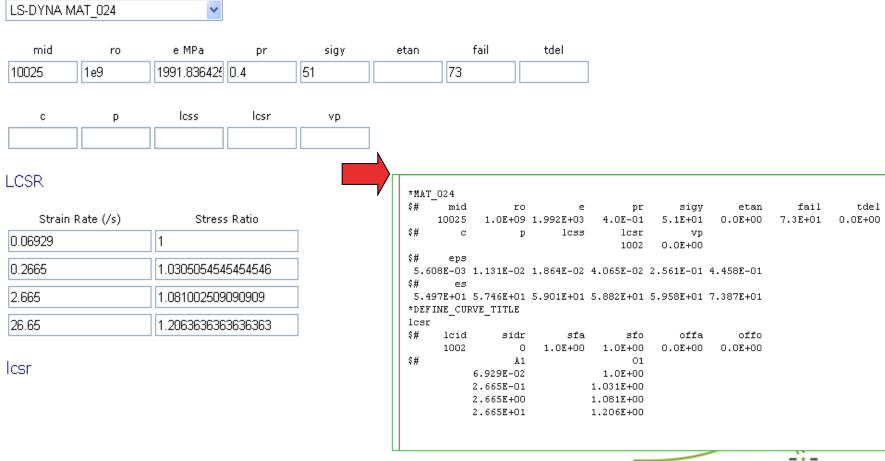

lcsr

LCSR


Strain Rate (/s)	Stress Ratio
0.06929	1
0.2665	1.0305054545454546
2.665	1.081002509090909
26.65	1.206363636363636363

lcsr

Modeling post-yield & failure


Icsr

Writing the .dyn file

Ls-Dyna MAT_024 (LCSR)

Supported Software

- Matereality Partners
- **III ABAQUS**
- **♦**ALGOR.
 - **NNSYS**
- Moldex3D
- moldflow/
 - UGS
 Transforming the process of innovation

- ABAQUS
- ANSYS
- Autodesk Algor
- Autodesk Moldflow
- LS-DYNA
- Moldex3D
- Matlab
- PAM-CRASH
- NX Nastran

Conclusion

- Web-Platform to store any material data
- Web-Software to convert data to
 - Elastic-Plastic cards for plastics
 - Crash material cards for CAE
 - Hyperelastic cards for rubber materials
 - Injection-molding simulation inputs
 - NASTRAN input decks
- Many CAE software supported

